5. Simpson's 3/8 Rule for Numerical Integration

The numerical integration technique known as "Simpson's $3 / 8$ rule" is credited to the mathematician Thomas Simpson (1710-1761) of Leicestershire, England. His also worked in the areas of numerical interpolation and probability theory.

Theorem (Simpson's 3/8 Rule) Consider $y=f(x)$ over $\left[x_{0}, x_{3}\right]$, where $x_{1}=x_{0}+h, x_{2}=x_{0}+2 h$, and $x_{3}=x_{0}+3 h$. Simpson's $3 / 8$ rule is

$$
S E(f, h)=\frac{3 h}{8}\left(f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)\right) .
$$

This is an numerical approximation to the integral of $f(x)$ over $\left[x_{0}, x_{3}\right]$ and we have the expression

$$
\int_{x_{0}}^{x_{3}} f(x) d l x=S E(f, h) .
$$

The remainder term for Simpson's $3 / 8$ rule is $R_{B E}(f, h)=-\frac{3}{80} f^{(4)}$ (c) h^{5}, where c lies somewhere between x_{0} and x_{3}, and have the equality

$$
\int_{x_{0}}^{x_{3}} f(x) d d x=\frac{3 h}{8}\left(f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)\right)-\frac{3}{80} f^{(4)}(c) h^{5} .
$$

Composite Simpson's 3/8 Rule

Our next method of finding the area under a curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is by approximating that curve with a series of cubic segments that lie above the intervals $\left\{\left[\mathrm{X}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right]\right\}_{\mathrm{k}=1}^{3 \mathrm{~m}}$. When several cubics are used, we call it the composite Simpson's $3 / 8$ rule.

Theorem (Composite Simpson's 3/8 Rule) Consider $y=f(x)$ over [a, b]. Suppose that the interval [a, b] is subdivided into 3 m subintervals $\left\{\left[x_{k-1}, x_{k}\right]\right\}_{k=1}^{3 m}$ of equal width $h=\frac{b-a}{3 m}$ by using the equally spaced sample points $\mathrm{x}_{\mathrm{k}}=\mathrm{x}_{\mathrm{i}}+\mathrm{kh}$ for $\mathrm{k}=0,1,2, \ldots, 3 \mathrm{~m}$. The composite Simpson's 3/8 rule for 3 In subintervals is

$$
S C(f, h)=\frac{3 h}{8} \sum_{k=1}^{m}\left(f\left(x_{3 k-3}\right)+3 f\left(x_{3 k-2}\right)+3 f\left(x_{3 k-1}\right)+f\left(x_{3 k}\right)\right) .
$$

is an numerical approximation to the integral, and

$$
\int_{2}^{b} f(x) d x=S C(f, h)+E_{S C}(f, h) .
$$

Furthermore, if $f(x) \in C^{4}[a, b]$, then there exists a value c with $a<c<b$ so that the error term $\mathrm{E}_{3 \mathrm{C}}(\mathrm{f}, \mathrm{h})$ has the form

$$
E_{s c}(f, h)=-\frac{(b-a) f^{4}(c)}{80} h^{4} .
$$

This is expressed using the "big o " notation $\mathrm{E}_{3 \mathrm{EE}}(\mathrm{f}, \mathrm{h})=\boldsymbol{o}\left(\mathrm{h}^{4}\right)$.
Remark. When the step size is reduced by a factor of $\frac{1}{2}$ the remainder term $E_{s c}(f, h)$ should be reduced by approximately $\left(\frac{1}{2}\right)^{4}=0.0625$.

Example 1. Let $f[x]$ be $\int_{0}^{2}(2+\operatorname{Cos}[2 \sqrt{x}]) d d x$.
1 (a) Numerically approximate the integral by using Simpson's $3 / 8$ rule with $m=1,2,4$.
1 (b) Find the analytic value of the integral (i.e. find the "true value").
1 (c) Find the error for the Simpson' $3 / 8$ rule approximations.
Solution 1.

Example 1. Let $f[x]$ be $\int_{0}^{2}(2+\operatorname{Cos}[2 \sqrt{x}]) d x$.
1 (a) Numerically approximate the integral by using Simpson's $3 / 8$ rule with $\mathrm{m}=1,2,4$.
1 (b) Find the analytic value of the integral (i.e. find the "true value").
1 (c) Find the error for the Simpson' $3 / 8$ rule approximations.
Solution 1 (a).

$$
f[x]=2+\cos [2 \sqrt{x}]
$$

We will use simulated hand computations for the solution.
$f\left[x_{-}\right]=2+\operatorname{Cos}[2 \sqrt{x}] ;$
$s 1=\frac{3 \frac{2-0}{3}}{8}\left(f[0]+3 f\left[\frac{2}{3}\right]+3 f\left[\frac{4}{3}\right]+f[2]\right)$
NumberForm[$\mathrm{H}[\mathrm{s} 1]$, 12]
$\frac{1}{4}\left(5+3\left(2+\operatorname{Cos}\left[2 \sqrt{\frac{2}{3}}\right]\right)+\operatorname{Cos}[2 \sqrt{2}]+3\left(2+\operatorname{Cos}\left[\frac{4}{\sqrt{3}}\right]\right)\right)$
3.46059898098
$s 2=\frac{3 \frac{2 L 0}{6}}{8}\left(f[0]+3 f\left[\frac{1}{3}\right]+3 f\left[\frac{2}{3}\right]+2 f[1]+3 f\left[\frac{4}{3}\right]+3 f\left[\frac{5}{3}\right]+f[2]\right)$
HumberForm[H[s2] , 12]
$\frac{1}{8}\left(5+2(2+\operatorname{Cos}[2])+3\left(2+\operatorname{Cos}\left[2 \sqrt{\frac{2}{3}}\right]\right)+3\left(2+\operatorname{Cos}\left[2 \sqrt{\frac{5}{3}}\right]\right)+\operatorname{Cos}[2 \sqrt{2}]+3\left(2+\operatorname{Cos}\left[\frac{2}{\sqrt{3}}\right]\right)+3\left(2+\operatorname{Cos}\left[\frac{4}{\sqrt{3}}\right]\right)\right)$
3. 46003538318

$$
s 4=\frac{3 \frac{2-0}{12}}{8}\left(f[0]+3 f\left[\frac{1}{6}\right]+3 f\left[\frac{1}{3}\right]+2 f\left[\frac{1}{2}\right]+3 f\left[\frac{2}{3}\right]+3 f\left[\frac{5}{6}\right]+2 f[1]+3 f\left[\frac{7}{6}\right]+3 f\left[\frac{4}{3}\right]+2 f\left[\frac{3}{2}\right]+3 f\left[\frac{5}{3}\right]+3 f\left[\frac{11}{6}\right]+f[2]\right)
$$

HumberForm [H [s4], 12]

$$
\begin{aligned}
& \frac{1}{16}\left(5+2(2+\cos [2])+3\left(2+\cos \left[\sqrt{\frac{2}{3}}\right]\right)+3\left(2+\cos \left[2 \sqrt{\frac{2}{3}}\right]\right)+3\left(2+\cos \left[2 \sqrt{\frac{5}{3}}\right]\right)+2(2+\cos [\sqrt{2}])+\right. \\
& \left.\quad \cos [2 \sqrt{2}]+3\left(2+\cos \left[\frac{2}{\sqrt{3}}\right]\right)+3\left(2+\cos \left[\frac{4}{\sqrt{3}}\right]\right)+3\left(2+\cos \left[\sqrt{\frac{10}{3}}\right]\right)+3\left(2+\cos \left[\sqrt{\frac{14}{3}}\right]\right)+2(2+\cos [\sqrt{6}])+3\left(2+\cos \left[\sqrt{\frac{22}{3}}\right]\right)\right)
\end{aligned}
$$

3.46000003113

Solution 1 (b).
The integral of $f[x]=2+\operatorname{Cos}[2 \sqrt{x}]$ can be determined.

$$
\begin{aligned}
& \int(2+\cos [2 \sqrt{x}]) d x \\
& 2 x+\frac{1}{2} \cos [2 \sqrt{x}]+\sqrt{x} \sin [2 \sqrt{x}]
\end{aligned}
$$

The value of the definite integral

$$
\begin{aligned}
& \mathbf{v a l}=\int_{0}^{2}(2+\operatorname{Cos}[2 \sqrt{\mathbf{x}}]) d \mathbf{x} \\
& \frac{7}{2}+\frac{1}{2} \cos [2 \sqrt{2}]+\sqrt{2} \sin [2 \sqrt{2}]
\end{aligned}
$$

H [val]

3.46

HumberForm [H[val] , 17]
3.459997672170804

Solution 1 (c).
val - t16
-0.000002358959196

