2. The Midpoint Rule for Numerical Integration

Theorem (Midpoint Rule) Consider $\mathrm{y}=\mathrm{f}(\mathrm{x})$ over $\left[\mathrm{x}_{0}, \mathrm{x}_{1}\right]$, where $\mathrm{x}_{1}=\mathrm{x}_{0}+\mathrm{h}$. The midpoint rule is
$M P(f, h)=h f\left(x_{0}+\frac{h}{2}\right)$.
This is an numerical approximation to the integral of $f(x)$ over $\left[x_{0}, x_{1}\right]$ and we have the expression

$$
\int_{x_{0}}^{x_{1}} f(x) d d x \approx M P(f, h)
$$

The remainder term for the midpoint rule is $\mathrm{R}_{\mathrm{AP}}(f, h)=\frac{1}{24} f^{\prime \prime}$ (c) h^{3}, where c lies somewhere between x_{0} and x_{1}, and have the equality

$$
\int_{x_{0}}^{x_{1}} f(x) d x=h f\left(x_{0}+\frac{h}{2}\right)+\frac{1}{24} f^{\prime \prime} \text { (c) } h^{3} .
$$

Composite Midpoint Rule

An intuitive method of finding the area under a curve $y=f(x)$ is by approximating that area with a series of rectangles that lie above the intervals $\left\{\left[\mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}\right]\right\}_{\mathrm{k}=1}^{\mathrm{m}}$. When several rectangles are used, we call it the composite midpoint rule.

Theorem (Composite Midpoint Rule) Consider $y=f(x)$ over $[a, b]$. Suppose that the interval [a, b] is subdivided into m subintervals $\left\{\left[x_{k-1}, x_{k}\right]\right\}_{k=1}^{m}$ of equal width $h=\frac{b-a}{m}$ by using the equally spaced nodes $c_{k}=a+\left(k-\frac{1}{2}\right) h$ for $k=1,2, \ldots, \underline{m}$. The composite midpoint rule for m subintervals is

$$
M(f, h)=h \sum_{k=1}^{m} f\left(c_{k}\right)
$$

This is an numerical approximation to the integral of $f(x)$ over $[a, b]$ and we write

$$
\int_{2}^{b} f(x) d d x \approx M(f, h)
$$

Remainder term for the Composite Midpoit Rule

Corollary (Midpoint Rule: Remainder term) Suppose that [a, b] is subdivided into m subintervals $\left\{\left[x_{k-1}, x_{k}\right]\right\}_{k=1}^{m}$ of width $h=\frac{b-a}{m}$. The composite midpoint rule

$$
M(f, h)=h \sum_{k=1}^{m} f\left(a+\left(k-\frac{1}{2}\right) h\right)
$$

is an numerical approximation to the integral, and

$$
\int_{2}^{b} f(x) d x=M(f, h)+E_{M}(f, h) .
$$

Furthermore, if $f(x) \in C^{i}[a, b]$, then there exists a value c with $a<c<b$ so that the error term $E_{M}(f, h)$ has the form

$$
E_{M}(f, h)=\frac{(b-a) f^{2}(c)}{24} h^{2} .
$$

This is expressed using the "big o " notation $\mathrm{E}_{\mathcal{M}}(\mathrm{f}, \mathrm{h})=\boldsymbol{o}\left(\mathrm{h}^{2}\right)$.
Remark. When the step size is reduced by a factor of $\frac{1}{2}$ the error term $E_{M}(f, h)$ should be reduced by approximately $\left(\frac{1}{2}\right)^{2}=0.25$.

Example 1. Consider the integral $\int_{0}^{2}(2+\operatorname{Cos}[2 \sqrt{x}]) d x$.
1 (a) Numerically approximate the integral by using the midpoint rule with $\mathrm{m}=1,2,4,8$, and 16 subintervals.
1 (b) Find the analytic value of the integral (i.e. find the "true value").
Solution 1.

Example 1. Consider the integral $\int_{0}^{2}(2+\operatorname{Cos}[2 \sqrt{x}]) d x$.
1 (a) Numerically approximate the integral by using the midpoint rule with $\mathrm{m}=1,2,4,8$, and 16 subintervals.
1 (b) Find the analytic value of the integral (i.e. find the "true value").
Solution 1 (a).

We will use simulated hand computations for the solution.
$f[x]=2+\operatorname{Cos}[2 \sqrt{x}] ;$
$m 1=\frac{2-0}{1}(f[1])$
H[m1]
$2(2+\operatorname{Cos}[2])$
3.16771
$m 2=\frac{2-0}{2}\left(f\left[\frac{1}{2}\right]+f\left[\frac{3}{2}\right]\right)$

H[m2]

$4+\operatorname{Cos}[\sqrt{2}]+\operatorname{Cos}[\sqrt{6}]$
3.38604
$m 4=\frac{2-0}{4}\left(f\left[\frac{1}{4}\right]+f\left[\frac{3}{4}\right]+f\left[\frac{5}{4}\right]+f\left[\frac{7}{4}\right]\right)$
H[m4]
$\frac{1}{2}(8+\operatorname{Cos}[1]+\operatorname{Cos}[\sqrt{3}]+\operatorname{Cos}[\sqrt{5}]+\operatorname{Cos}[\sqrt{7}])$
3.44145

$$
m 8=\frac{2-0}{8}\left(f\left[\frac{1}{8}\right]+f\left[\frac{3}{8}\right]+f\left[\frac{5}{8}\right]+f\left[\frac{7}{8}\right]+f\left[\frac{9}{8}\right]+f\left[\frac{11}{8}\right]+f\left[\frac{13}{8}\right]+f\left[\frac{15}{8}\right]\right)
$$

H [m8]
$\frac{1}{4}\left(16+\cos \left[\sqrt{\frac{3}{2}}\right]+\cos \left[\frac{1}{\sqrt{2}}\right]+\cos \left[\frac{3}{\sqrt{2}}\right]+\cos \left[\sqrt{\frac{5}{2}}\right]+\cos \left[\sqrt{\frac{7}{2}}\right]+\cos \left[\sqrt{\frac{11}{2}}\right]+\cos \left[\sqrt{\frac{13}{2}}\right]+\cos \left[\sqrt{\frac{15}{2}}\right]\right)$
3.45536
$\mathrm{m} 16=\frac{2-0}{16}\left(\mathrm{f}\left[\frac{1}{16}\right]+\mathrm{f}\left[\frac{3}{16}\right]+\mathrm{f}\left[\frac{5}{16}\right]+\mathrm{f}\left[\frac{7}{16}\right]+\mathrm{f}\left[\frac{9}{16}\right]+\mathrm{f}\left[\frac{11}{16}\right]+\mathrm{f}\left[\frac{13}{16}\right]+\mathrm{f}\left[\frac{15}{16}\right]+\mathrm{f}\left[\frac{17}{16}\right]+\mathrm{f}\left[\frac{19}{16}\right]+\mathrm{f}\left[\frac{21}{16}\right]+\mathrm{f}\left[\frac{23}{16}\right]+\mathrm{f}\left[\frac{25}{16}\right]+\mathrm{f}\left[\frac{27}{16}\right]+\mathrm{f}\left[\frac{29}{16}\right]+\mathrm{f}\left[\frac{31}{16}\right]\right)$
H [m16]
$\frac{1}{8}\left(32+\operatorname{Cos}\left[\frac{1}{2}\right]+\operatorname{Cos}\left[\frac{3}{2}\right]+\operatorname{Cos}\left[\frac{5}{2}\right]+\operatorname{Cos}\left[\frac{\sqrt{3}}{2}\right]+\operatorname{Cos}\left[\frac{3 \sqrt{3}}{2}\right]+\operatorname{Cos}\left[\frac{\sqrt{5}}{2}\right]+\right.$

$$
\left.\cos \left[\frac{\sqrt{7}}{2}\right]+\cos \left[\frac{\sqrt{11}}{2}\right]+\cos \left[\frac{\sqrt{13}}{2}\right]+\cos \left[\frac{\sqrt{15}}{2}\right]+\cos \left[\frac{\sqrt{17}}{2}\right]+\cos \left[\frac{\sqrt{19}}{2}\right]+\cos \left[\frac{\sqrt{21}}{2}\right]+\cos \left[\frac{\sqrt{23}}{2}\right]+\cos \left[\frac{\sqrt{29}}{2}\right]+\cos \left[\frac{\sqrt{31}}{2}\right]\right)
$$

3.45884

Solution 1 (b).

val $=\int_{0}^{2}(2+\boldsymbol{\operatorname { C o s }}[2 \sqrt{\mathrm{x}}]) d \mathbf{x}$
$\frac{7}{2}+\frac{1}{2} \operatorname{Cos}[2 \sqrt{2}]+\sqrt{2} \operatorname{Sin}[2 \sqrt{2}]$

H[val]

3.46

HumberForm[H[val] , 12]
3.45999767217

